
1

Graphical Games

Game Theory
Lecture 13

2

• Representing multiplayer games with large player

populations in the normal form is undesirable for both

practical and conceptual reasons.

 On the practical side, the number of parameters that

must be specified grows exponentially with the size

of the population.

 On the conceptual side, the normal form may fail to

capture structure that is present in the strategic

interaction, and which can aid understanding of the

game and computation of its equilibria.

• For this reason, there have been many proposals for

parametric multiplayer game representations that are

more succinct than the normal form, and attempt to

model naturally arising structural properties.

 Examples include congestion and potential games

and related models.

Introduction

3

• Graphical games are a representation of multiplayer

games meant to capture and exploit locality or sparsity

of direct influences.

• They are most appropriate for large population games

in which the payoffs of each player are determined by

the actions of only a small subpopulation.

• As such, they form a natural counterpart to earlier

parametric models.

Whereas congestion games and related models

implicitly assume a large number of weak

influences on each player, graphical games are

suitable when there is a small number of strong

influences.

Graphical Games: Introduction

4

• A graphical game is described at the first level by an

undirected graph G in which players are identified with

vertices.

 The payoff to player i is a function only of the actions

of i and its neighbors, rather than the actions of the

entire population.

 In the many natural settings where such local

neighborhoods are much smaller than the overall

population size, the benefits of this parametric

specification over the normal form are already

considerable.

Graphical Games: Introduction

• In this lecture, we examine the computation of Nash

equilibria in graphical games in which the underlying

graph G is a tree.

 Here we will discuss a natural two-pass algorithm for

computing Nash equilibria requiring only the local

exchange of “conditional equilibrium” information over

the edges of G.

5

Basic Notations

6

Basic Notations

7

Graphical Game: Definition

8

Graphical Game: Remarks
• Graphical games are a (potentially) more compact way of

representing games than standard normal form.

 Rather than requiring a number of parameters that is

exponential in the number of players n, a graphical game

requires a number of parameters that is exponential only in

the size d of the largest local neighborhood.

 Thus if d ≪ n – that is, the number of direct influences on

any player is much smaller than the overall population size

– the graphical game representation is dramatically smaller

than the normal form.

• It is also worth noting that although the payoffs to player i are

determined only by the actions of the players in N(i),

equilibrium still requires global coordination across the player

population:

 if player i is connected to player j who is in turn connected

to player k, then i and k indirectly influence each other via

their mutual influence on the payoff of j.

 How local influences propagate to determine global

equilibrium outcomes is one of the computational

challenges posed by graphical games.

9

• We describe the most basic algorithm exploiting the

advantages of graphical game representation for the

purposes of equilibrium computation.

• We assume that the underlying graph G is a tree.

While obviously a strong restriction on the

topology, we shall see that this case already

presents nontrivial computational challenges.

We first describe the algorithm TreeNash at a

high level, leaving certain important

implementation details unspecified, because it is

conceptually advantageous to do so.

We then describe one instantiation of the missing

details, yielding an algorithm that provably

computes approximations of all equilibria.

Computing Nash Equilibria in
Tree Graphical Games

10

Some notation and concepts
• We begin with some notation and concepts needed for the

description of TreeNash.

• In order to distinguish parents from children in the tree, it

will be convenient to treat players/vertices symbolically (such

as U, V, and W) rather than by integer indices, so

 we use MV to denote the local game matrix for the player

identified with player/vertex V.

 We use capital letters to denote vertex/players to distinguish

them from their chosen actions, for which we shall use

lower case.

• If G is a tree, we choose an arbitrary vertex as the root (which

we visualize as being at the bottom, with the leaves at the top).

 Any vertex on the path from a vertex V to the root will be

called downstream from V, and

 any vertex on a path from V to any leaf will be called

upstream from V .

 Thus, each vertex other than the root has exactly one

downstream neighbor (or child), and perhaps many

upstream neighbors (or parents).

 We use UPG(V) to denote the set of all vertices in G that are

upstream from V , including V by definition.

11

g

Some notation and concepts

12

TreeNash Algorithm

13

• Since v and ui are continuous variables, it is not obvious that the

table T(v,ui) can be represented compactly, or even finitely, for

arbitrary vertices in a tree. For now we will simply assume a

finite representation, and shortly discuss how this assumption

can be met.

• The initialization of the downstream pass of the algorithm

begins at the leaves of the tree, where the computation of the

tables is straightforward:

 If U is a leaf and V its only child, then T (v, u) = 1 if and only

if U = u is a best response to V = v (Step (ii) (c) of the

Algorithm).

TreeNash Algorithm: Downstream Pass

 Note that there may be more than one witness for T (w,v) = 1.

14

TreeNash Algorithm: Downstream Pass
• In addition to computing the value T(w,v) on the downstream pass

of the algorithm, V will also keep a list of the witnesses 𝑢 for each

pair (w,v) for which T(w,v) = 1 (Step ii(d)2 of the Algorithm).

 These witness lists will be used on the upstream pass.

• To see that the semantics of the tables are preserved by the

computation just described, suppose that this computation yields

T(w,v) = 1 for some pair (w,v), and let 𝑢 be a witness for T(w,v) = 1

 The fact that T(v,ui) = 1 for all i ensures by induction that:

 if V plays v, there are upstream NE in which each Ui = ui.

 Furthermore, v is a best response to the local settings U1 = u1,

. . . , Uk = uk,W = w.

 Therefore, we are in equilibrium upstream from V.

 On the other hand, if T (w,v) = 0, it is easy to see there can be

no equilibrium in which W = w, V = v. Note that the existence

of an NE guarantees that T(w,v) = 1 for at least one (w,v) pair.

• The downstream pass of the algorithm terminates at the root Z,

which receives tables T(z,yi) from each parent Yi .

• Z simply computes a one-dimensional table T (z) such that :

 T(z) = 1 if and only if for some witness 𝑦, T(z,yi) = 1 for all i,

and z is a best response to 𝑦.

15

TreeNash Algorithm: Upstream Pass

• The upstream pass begins by Z which

 chooses any z for which T(z) = 1, and

 chooses any witness (y1, . . . , yk) to T(z) = 1, and

then

 passing both z and yi to each parent Yi.

 The interpretation is that Z will play z, and is

“instructing” Yi to play yi .

 Inductively, if a vertex V receives a value v to

play from its downstream neighbor W, and the

value w that W will play, then it must be that

T(w,v) = 1.

 So V chooses a witness 𝑢 to T(w,v) = 1, and

passes each parent Ui their value ui as well as

v (Step (iii) of the Algorithm).

 Note that the semantics of T(w,v) = 1 ensure

that V = v is a best response to 𝑈 = 𝑢,W = w.

16

• We have left the choices of each witness in the upstream pass

unspecified or nondeterministic to emphasize that the tables and

witness lists computed represent all the NE.

 The upstream pass can be specialized to find a number of

specific NE of interest, including

 player optimum (NE maximizing expected reward to a

chosen player),

 social optimum (NE maximizing total expected reward,

summed over all players), and

 welfare optimum (NE maximizing expected reward to the

player whose expected reward is smallest).

Theorem Let (G,M) be any graphical game in which G is a tree.

Algorithm TreeNash computes a Nash equilibrium for (G,M).

Furthermore, the tables and witness lists computed by the

algorithm represent all Nash equilibria of (G,M).

TreeNash Algorithm: Upstream Pass

• Modulo the important details regarding the representation of the

tables T(w,v), which we discuss next, the arguments provided

above establish the following formal result.

17

18

Z

YK’YiY1

V

Ui UKU1

W

root

d
o

w
n

stre
am

u
p

st
re

am

𝑇 𝑤, 𝑣 = 1 ⟺
𝑣 ∈ 𝐵𝑅𝑉 𝒖,𝑤 ⋀𝑇 𝑣, 𝑢𝑖 = 1 for all i = 1,… , K

Then: 𝒖 = (𝑢1, … , 𝑢𝐾) is a witness

leaf nodes

𝑇 𝑣, 𝑢𝑖 = 1 ⟺

∃ 𝑎𝑛 𝑁𝐸 𝑓𝑜𝑟 (𝐺𝑈𝑖 ,ℳ𝑉=𝑣
𝑈𝑖)⋀𝑢𝑖 ∈ 𝐵𝑅𝑢𝑖

𝑣

𝐺𝑈𝑖

child of V

a parent of V

T(z,yi) = 1 ⟺

∃ 𝑎𝑛 𝑁𝐸 𝑓𝑜𝑟 𝐺𝑌𝑖 ,ℳ𝑍=𝑧
𝑌𝑖 ∧ 𝑦𝑖∈ 𝐵𝑅𝑦𝑖

𝑧 𝑇 𝑧 = 1 ⟺
𝑧 ∈ 𝐵𝑅𝑍 𝒚 ⋀𝑇 𝑧, 𝑦𝑖 = 1 ∀i = 1,… , K′

Then: 𝒚 = (𝑦1, … , 𝑦𝐾′) a witness

19

An Approximation Algorithm

• In this section, we sketch one instantiation of the missing details

of algorithm TreeNash that yields a polynomial-time algorithm

for computing approximate NE for the tree game (G,M).

 The approximation can be made arbitrarily precise with greater

computational effort.

20

• We omit the proof of Lemma, but what matters is that the

algorithm remains exponential in d simply due to the

representational complexity of the local product

distributions.

 The important point is that τ needs to depend only on

the local neighborhood size d, not the total number of

players n.

An Approximation Algorithm

21

• It is now straightforward to describe ApproximateTreeNash.

This algorithm is identical to algorithm TreeNash with the

following exceptions:

 The algorithm now takes an additional input 𝜀.

 For any vertex U with child V , the table T (u, v) will contain

only entries for u and v multiples of τ .

 All computations of best responses in algorithm TreeNash

become computations of 𝜀 -best responses in algorithm

ApproximateTreeNash.

The ApproximateTreeNash Algorithm

